6"- 8"-10" Rewindable Submersible Motors

INSTALLATION AND OPERATING INSTRUCTIONS

MWCP

Water cooled motors with encapsulated resin filled stator. Coupling dimensions and flange according to NEMA standard.

Pear

FFATURES.

- 5 15 HP / 1 PH. 220-230 V/60 HZ
- 5,5-60 HP / 3 PH. 220-230 V/60 Hz
- · High efficiency provides operation cost savings
- · Motor casing and shaft made of AISI304L stainless steel (Optional AISI316L)
- · High resistance coated cast iron upper and lower bracket (Optional AISI304L / AISI316L)
- Water lubricated Kingsbury type thrust bearings
- Protection IP68
- Sand slinger protection
- Pressure equalizing diaphragm •
- Insulation class F
- Removable lead cable
- · Starting method D.O.L. or star/delta
- Max. voltage fluctuation: ±10%
- Max. water temperature: 95°F (35°C) with at least 0.16 m/s of water flow speed
- Max. motor startings per hour: 20
- Max. immersion depth: 1150 feet (350 m)

MRCP - MRSP

Rewindable submersible motors, asynchronous, two or four pole submersible motor, made combining cast iron and AISI 304 stainless steel or full stainless steel 304 or 316, to get the best durability and resistance. Available up to 75 HP.

Our electrical design provides the best efficiency motor, bringing the best performance out of your submersible pump.

PEARL MOTORS suitable for use with variable frequency drive (30Hz - 60Hz).

FFATURES:

- 6" Rewindable motors up to 50 HP
- 8" Rewindable motors up to 125 HP
- 10" Rewindable motors up to 250 HP
- High efficiency provides operation cost savings
- · Flange with NEMA standards
- · Stainless steel shaft
- · Optional high corrosion resistive materials (AISI 304 - AISI 316 - Duplex - Bronze)
- Max. ambient water temperature 85°F (30° C) (optional up to 150°F (70°C)
- Standard voltage 220/230/380/460V 50/60 Hz (Allowable voltage tolerance \pm %10)
- · Variable operation revolutions by frequency convertor (over 30 Hz)
- Availability to be operated by Soft-Starter
- CW & CCW direction of rotation
- PVC. PP & PE2 + PA winding wire, which provides long service life
- Max. immersion depth 6": 1150 feet (350 m)
- Max. immersion depth 8" & 10": 1640 feet (500 m)

BEFORE MOTOR INSTALLATION. PERFORM THE FOLLOWING PROCEDURES:

- 1. Review instruction manual and follow standard safety procedures.
- 2. Disconnect electrical power supply to motor.
- 3. Place motor in vertical or horizontal position for water fillina.
- 4. Manually verify motor shaft is free to rotate in both directions.
- 5. Check the water level and fill if necessary.

Liquid level MUST be checked before installation! Risk of damage to the motor if instructions are not followed

1. SAFETY INFORMATION

Read this documentation carefully before installation. It contains fundamental instructions for installation, operation and maintenance. The symbols shown below together with the words "DANGER" and "WARNING" indicate a risk of danger if instructions are not followed.

Risk of electric shock if instructions are not followed.

Risk of injury and/or damage to person and/or property if instructions are not followed.

Risk of damage to the motor, pump and/or systems if instructions are not followed.

4. PEARL SUBMERSIBLE MOTORS

4.1 GENERAL INFORMATION

PEARL Submersible Motors are reliable apparatus designed to provide many years of operation without the need for routine maintenance, in case they are installed correctly. We therefore recommend reading this manual carefully and follow the written instructions thoroughly. We decline any responsibility for injury to persons and/or damage to property due to failure to follow our instructions.

This manual is for use in standard applications: please refer to your sales contact for instructions regarding special installations. Please contact technical support or our sales department for further inquiries.

4.2 APPLICATIONS AND SERVICE

PEARL Submersible Motors have been designed to be connect to all types of submersible pumps for use in domestic, industrial and agricultural systems for the lifting of substantially clean water. Please contact our technical support department for information regarding other types of installation.

5. TECHNICAL SPECIFICATIONS

PEARL Submersible Motors are squirrel cage asynchronous, electric rotor and called "wet-end" types, meaning that the winding of the motor is immersed completely under a water based mix, and this acts as the motor's internal liquid coolant.

Motors are protected against dust and against access to dangerous parts with wiring protected against the effects of the submersion. All motors can operate indifferently in both the clockwise and counterclockwise directions.

5.1 OPERATION AND TEMPERATURE

PEARL Submersible Motors can operate continuously to supply nominal power, provided they are powered by nominal voltage and frequency and the external water temperature outside the motor does not exceed 30°C (86°F), according to NEMA standards.

Variations in the power supply voltage must be limited roughly $\pm 10\%$ of the nominal value. The service factor is 1 for 50 Hz motors, and 1.15 for 60 Hz motors.

In applications where the water temperature exceeds 30°C (86°F), it is possible in these cases to use these motors but the power must be downgraded according to a specific correction coefficient; please refer to below table.

Water Temperature (°F)	THE POWER CAN BE ABSORBED FROM THE MOTOR COMPARED TO ITS NAME PLATE (%)					
	6" MOTORS	8" MOTORS				
95	95%	90%				
104	78%	71%				
113	60%	40%				

As an example, a standard, 8" 100 HP motor working with an external water temperature of 35° C (95° F), can be used to deliver maximum power of 100 x 0.95 = 95 HP.

Standard version motors can be used with external water temperatures of up to 40° C (104° F) provided they are downgraded correctly. In this calculations water flow speed around the motor considered not less than 0,5 m / sec in 6", 1 m / sec in 8".

Otherwise, motors should be constructed with winding wires that are specific for high temperatures.

2. PREPARATION FOR INSTALLATION

Before the installation, the pump should be checked if it has been damaged during the shipment or not.

The following should be checked before the installation:

- Check if there is any fracture or cut on the pump, motor and power cables and do not start the installation until damaged area is repaired.
- Make sure that insulation resistance is not lower than 20 M Ω (megaohm) by testing it with a 500 V Meger Tester.

The table below shows the condition of motors and power cables according to the insulation resistance data that's measured.

CONDITION OF THE MOTOR AND POWER CABLES	megahm Value (MΩ)
A new motor (which is not in well) or a used motor which can be reinstalled in well	20.0
A new motor in well	2.0
A motor in good condition in well	0.5 - 2.0
Damaged motor (It is not a must to take the pump out of the well, it can continue working)	0.02 - 0.5
Damaged motor and power cables (The pump has to be taken out of the well, power cables and motor have to be repaired or replaced. The motor can continue working in this condition but it will not work for long time)	0.01 - 0.02
Broken motor (The pump has to be taken out of the well, power cables have to be repaired or the motor has to be replaced)	0 - 0.01

The table above is prepared for the motors at 77°F. At higher temperatures, insulation resistance will be lower.

3. FILLING THE MOTOR WITH WATER

PEARL Submersible Motors are already filled with water-antifreeze mix. In consequence of potential evaporation while transport and storage, it is necessary to control the water-level inside the motor.

ATTENTION! Before operation control the water level inside the motor, if necessary fill the motor with clean water.

3.1- Position the motor horizontally. Remove the screw (1) of filling hole and the screw (2) of the emptying hole. Pour the clean water into the motor, make sure that no air left inside the motor. Replace the screw (2) of emptying hole. (Fig. 1A)

Fig. 1A

3.2 Position the motor vertically. Complete the missing water from the (1) screw of filling hole. Wait around 2-3 minutes. So there will be no air left into the motor. If there is still some water missing, fill it completely again and close the screw. (Fig. 1B)

4. COOLING THE MOTOR

Most important factor of submersible motors long service life is that the motor has to be cooled well. (Fig. 2) Required flow velocity around the motor is given in the table below for motors being cooled well enough.

If the motor will be installed in an open body of water (i.e pool) or diameter of the well is much bigger than the diameter of the motor, Flow Inducer Sleeve must be used to provide the flow velocities that are given in the table above, around the motor.

MODEL	MOTOR	RATING	MINIMUM WATER FLOW			
WIDDEL	HP	kW	m / seg	ft / seg		
6MRCP	5 - 25	4 - 18.5	0.2	0.65		
6MRSP	30 - 40	22 - 30.5	0.5	1.64		
8MRCP	40 - 75	30 - 56	0.2	0.65		
8MRSP	85 - 125	60 - 93	0.5	1.64		
10MRCP 10MRSP	125 - 250	90 - 180	0.5	1.64		

Required flow inducer sleeve's inside diameter that depends on the flow rate is given below as a diagram. For example, if a pump that has a 15 kW motor will be working at 120 GPM flow rate, minimum inside diameter of the flow inducer sleeve should be selected as 10 inch.

6. INSTALLATION

When the submersible pumps are installed to the well, they are connected to discharge flange with column pipes. For that reason column pipes and the couplings that connect the column pipes to each other are the parts that carry the pump. Extra attention and care is needed when the pipes are connected to each other. For the open body of water applications (i.e. pools), bottom part of the pump should be at least 12" higher than the bottom of the pool or the well and also flow inducer sleeve should be used outside of the motor for cooling it.

PEARL Submersible Pumps can only work safely up to 50 g/m³ amount of sand. If the amount of sand in the water is more than 50 g/m³, bearings of submersible pump will failure in short time because of wearing out. Failures that might be caused by the excessive amount of sand are out of WARRANTY.

If the pump installation will not be done by the PEARL distributors installation crews, people who will do the installation have to be professionals and experienced in this topic.

Handle the motor with appropriate lifting equipment. Any knock or impact can damage it even if there is no sign of external damage.

Check that the motor drive shaft and the pump drive shaft can turn freely.

6.1 CONNECTING THE SUBMERSIBLE MOTOR TO THE PUMP:

Required equipments for the pump installation are listed below.

- · Three-legged table
- 2 pipe clamps that match with the column pipe's diameter
 A hoist that will be able to carry the weight of the pump
- and column pipes that will be lowered to the well
- A steel sling that will be able to carry the weight of the pump and column pipes
- 2 chain pipe wrenches
- Enough amount of the plastic cable clamp to fit the power cables to column pipes (Power cables must be fitted to the column pipe in every 3 m)

In order to do the electrical controls and connect the panel safely, clamp-on ammeter and meger tester are needed. It is very important that electrical works are done by the professionals for the safety during the installation and starting the pump.

7. POWER SUPPLY CABLE

The choice of the power supply cables for the connection of the motor to the control panel is extremely important, as these parts must fulfill three fundamental requirements:

- The cable must be suitable for operation in wet environments and its class of insulation must be above the nominal voltage for the system.
- The capacity of the cable must be in excess of the charge current; this value is equal to the nominal current of the motor for the type with three terminal wires, and is equal to 58% of the nominal current of the motor for the type with six terminals.
- 3. Voltage drops along the power supply line must be contained to within strict limits (max 5%).

7.1 CONNECTION OF POWER CABLES

Connection of the power cable that will be used along the well and until the control panel with the power cable on the motor must be done very carefully and by the professionals only. Unless the insulation after the connection is well done, short circuit might happen when the connection area is in the water. Insulation of each cable should be stripped only as far as necessary to provide room for a stake type connector. Each individual joint should be taped with rubber electrical tape, using two layers by wrapping tightly for eliminating airspaces as much as possible.

Total thickness of tape should be no less than the thickness of the cable insulation in order to prevent the smashing of the cables when the pump is lowered in the well.

8. POWER CABLE SELECTION

Power cable that will be used should be appropriate to work under the water. For power cable selection, you can either use the table below or get in touch with VANSAN to ask for help for this occasion.

Unless the power cable is selected as water-proof and appropriate to be used under the water, the submersible pump is out of warranty.

Selection of power cable depends on the motor's power and the length of cable. Table below shows the maximum cable lengths that can be used depending on the motor power and cable size. Power cable length of the motor is 1×5 m for DOL 2×5 m for Star-Delta.

8.1 CONNECTION OF THE SUBMERSIBLE PUMP TO THE CONTROL PANEL

After the installation of the submersible pump in the well, power cables that are coming out of the pump should be connected to the electrical control panel. This process should be done by only a professional electrician. Electrical control panel should be protected from the water and moisture. The most important thing that should be taken into consideration is that the power cables should not be smash or bended.

Connections to the electrical control panel should be done depending on the schematic instructions that are taped inside the electrical control panel's cover. Liquid level electrodes should be also connected depending on the instructions.

7. POWER SUPPLY CABLE

The choice of the power supply cables for the connection of the motor to the control panel is extremely important, as these parts must fulfill three fundamental requirements:

- The cable must be suitable for operation in wet environments and its class of insulation must be above the nominal voltage for the system.
- The capacity of the cable must be in excess of the charge current; this value is equal to the nominal current of the motor for the type with three terminal wires, and is equal to 58% of the nominal current of the motor for the type with six terminals.
- 3. Voltage drops along the power supply line must be contained to within strict limits (max 5%).

7.1 CONNECTION OF POWER CABLES

Connection of the power cable that will be used along the well and until the control panel with the power cable on the motor must be done very carefully and by the professionals only. Unless the insulation after the connection is well done, short circuit might happen when the connection area is in the water. Insulation of each cable should be stripped only as far as necessary to provide room for a stake type connector. Each individual joint should be taped with rubber electrical tape, using two layers by wrapping tightly for eliminating airspaces as much as possible.

Total thickness of tape should be no less than the thickness of the cable insulation in order to prevent the smashing of the cables when the pump is lowered in the well.

8. POWER CABLE SELECTION

Power cable that will be used should be appropriate to work under the water. For power cable selection, you can either use the table below or get in touch with VANSAN to ask for help for this occasion.

Unless the power cable is selected as water-proof and appropriate to be used under the water, the submersible pump is out of warranty.

Selection of power cable depends on the motor's power and the length of cable. Table below shows the maximum cable lengths that can be used depending on the motor power and cable size. Power cable length of the motor is 1×16.4 ft for DOL 2 $\times 16.4$ ft for Star-Delta.

8.1 CONNECTION OF THE SUBMERSIBLE PUMP TO THE CONTROL PANEL

After the installation of the submersible pump in the well, power cables that are coming out of the pump should be connected to the electrical control panel. This process should be done by only a professional electrician. Electrical control panel should be protected from the water and moisture. The most important thing that should be taken into consideration is that the power cables should not be smash or bended.

Connections to the electrical control panel should be done depending on the schematic instructions that are taped inside the electrical control panel's cover. Liquid level electrodes should be also connected depending on the instructions.

Before the connection between electrical control panel and the main system of electricity, it should be checked with a circuit - tester to be sure there is no electricity in the control panel. Before the connection of the electrical control panel is done, power cable's insulation should be controlled by a Meger Tester.

The connection of the wire that exits the motor to the wire that must be brought to the control panel is particularly delicate and must be executed with great care by skilled personnel.

9. WIRING DIAGRAMS

In our motors, a series of three wires exits the motor in addition to a fourth, yellow/green wire for earth connection; these must be connected to the terminals for the controls.

D.O.L. CONNECTION FOR 3 PH MOTORS

STANDARD CONNECTION FOR 1 PH MOTORS

10. LEAD CABLE CONNECTION INSTRUCTIONS FOR 1 PH MOTORS TO CONTROL BOXES

a) Black (Neutral) b) Grey (Main) c) Brown (Auxiliar) d) Yellow-Green (Ground)

11. CHECKING THE DIRECTION OF ROTATION

The direction of rotation of the pump, which is indicated on its plate, is extremely important for the correct operation of the system. When the motor and the cables have been connected, use a crane or hoist to lift the pump and motor assembly and provide a short pulse of electric current. The electric pump tends to take the opposite direction of that of the drive shaft of the motor due to the recoil. Check if the direction of rotation of the drive shaft of the motor is correct; if not, swap over the terminals of the control panel to change it.

12. ADJUSTMENT OF PROTECTION DEVICES

Adjust the overload relay of the appliance to the value of the nominal current of the motor and start it. With an ammeter check the three phases, the amp-draw must be balanced (the maximum acceptable unbalance is 8%) and must be less than the value of the current shown on the label of the motor.

Reduce slowly the calibration of the overload relay until it starts.

Increase the calibration of the relay by 5% and start the motor again. If the relay starts again, it will be necessary to increase calibration by a further 5% or otherwise leave the fixed value.

13. POWER CABLE SELECTION

MOTOR RATING	3	COOPER WIRE SIZE										
VOLTS	H.P.	14	12	10	8	6	4	2	0	00	000	0000
	1 1/2	320	510	800	1260							
	2	250	390	610	960	1500						
	3	180	290	450	710	1110	1690					
	5			300	470	730	1110	1690				
200 V 60Hz	7 1/2				340	530	810	1230	1690			
01 50Hz	10				250	390	600	920	1240	1540		
50112	15					270	410	630	850	1060	1270	
	20						320	480	650	810	970	1150
	25							390	530	660	790	930
	30								430	540	640	750
	1 1/2	430	680	1070	1680							
	2	320	510	790	1250	1940						
	3	240	380	600	940	1470	2240					
	5		250	390	620	960	1470	2230				
230 V 60Hz	7 1/2			290	450	700	1070	1630	2200			
220 V 50Hz	10				340	520	800	1220	1640	2050		
ELO V CONE	15					360	550	830	1130	1410	1680	
	20						420	640	860	1070	1280	1510
	25						340	520	700	870	1040	1230
	30							420	570	710	850	1000
	1 1/2	1720										
	2	1280	2030									
	3	960	1530	2400								
	5	630	1000	1570	2470							
	7 1/2	460	730	1150	1800	2610						
460 V 60Hz	10		550	850	1340	2090	3190					
AND	15			590	920	1430	2190	3340				
360 V 50Hz	20				700	1100	1670	2550	3340			
(Divide lengths by	25				570	890	1360	2070	2600	3500		
1.4 for 360 V 60 Hz)	30					730	1110	1690	2280	2650	3400	
	40						850	1300	1750	2190	2610	3070
	50						680	1040	1400	1750	2090	2450
	60							870	1180	1470	1760	2070
	75								950	1190	1420	1670
	100									890	1060	1240

13. ELECTRICAL DATA 60 HZ

6MWCP ELECTRICAL DATA

TYPE	Р	N	axial Load	VOLT.	nN	IN	IN - SF	IA	Efficie	ency (%	load)	Cos 0 (% load)			TN	TA							
	[HP]	[kW]	[kN]	۷	rpm	A	Α	А	50	75	100	50	75	100	Nm	Nm							
				460	3470	7.8	8.6	32.0	71.1	75.9	77.7	0.73	0.79	0.83	10.9	18.1							
6MWCP 50	CP 50 5.0 4	5.0 4	20	380	3465	9.4	10.4	38.7	71.1	75.9	77.7	0.73	0.79	0.83	11.0	18.4							
				220	3455	16.3	17.9	66.9	70.0	75.0	77.0	0.73	0.79	0.83	11.2	19.0							
				460	3430	9.8	10.8	52.5	73.5	78.6	80.0	0.79	0.83	0.88	15.2	29.2							
6MWCP 75	7.5	5.5	20	380	3425	11.9	13.1	63.6	73.5	78.6	80.0	0.79	0.83	0.88	15.3	29.5							
				220	3415	20.5	22.5	109.8	72.5	77.5	79.0	0.79	0.83	0.88	15.5	30.1							
				460	3460	14.2	15.8	75.0	69.6	75.6	78.1	0.74	0.81	0.85	20.5	44.8							
6MWCP 100	10	7.5	20	380	3455	17.2	20.0	90.8	69.6	75.6	78.1	0.74	0.81	0.85	20.6	45.1							
				220	3445	29.7	32.7	156.8	69.0	74.7	77.1	0.79	0.83	0.88	20.8	45.7							
				460	3490	18.0	22.2	97.2	72.6	78.1	85.5	0.75	0.81	0.90	30.1	71.0							
6MWCP 150	15 11	150 15 11	5 11	11	15 11	15 11	20	380	3485	21.8	25.1	117.7	72.6	78.1	85.5	0.75	0.81	0.90	30.2	71.3			
				220	3475	37.6	29.1	203.2	71.6	77.2	84.5	0.75	0.81	0.90	30.4	71.9							
				460	3485	26.4	30.4	195.0	72.3	77.9	80.1	0.77	0.81	0.86	41.1	98.0							
6MWCP 200	20	15	20	380	3480	32.0	36.8	236.1	72.3	77.9	80.1	0.77	0.81	0.86	41.2	98.3							
				220	3470	55.2	39.4	407.7	71.5	77.0	79.2	0.77	0.81	0.86	41.4	98.9							
		5 18.5	18.5	18.5	18.5		460	3490	34.1	39.2	265.0	71.8	77.5	80.0	0.74	0.80	0.85	50.5	138.0				
6MWCP 250	25					18.5	18.5	18.5	18.5	18.5	18.5	18.5	8.5 20	20	380	3485	41.3	47.5	320.8	71.8	77.5	80.0	0.74
				220	3475	71.3	47.7	554.1	70.9	76.5	79.0	0.74	0.80	0.85	50.8	138.9							
				460	3485	39.5	43.5	300.0	74.4	79.3	81.1	0.75	0.80	0.86	60.2	157.0							
6MWCP 300	30	22	20	380	3480	47.8	55.0	363.2	74.4	79.3	81.1	0.75	0.80	0.86	60.3	157.3							
				220	3470	82.6	56.8	627.3	73.4	79.3	80.1	0.75	0.80	0.86	60.5	157.9							
				460	3490	55.6	58.8	444.0	73.1	78.4	80.7	0.74	0.80	0.84	81.6	240.0							
6MWCP 400	40	30	26.5	380	3485	67.3	77.4	537.5	73.1	78.4	80.7	0.74	0.80	0.84	81.7	240.3							
				220	3475	116.3	-	928.4	72.2	77.5	79.8	0.74	0.80	0.84	81.9	240.9							
				460	3480	69.0	79.3	516.0	73.4	78.6	80.8	0.70	0.78	0.83	100.7	249.0							
6MWCP 500	50	37	26.5	380	3475	83.5	96.0	624.6	73.4	78.6	80.8	0.70	0.78	0.83	100.8	249.3							
				220	3465	144.3	-	1,078.9	73.5	77.7	79.9	0.70	0.78	0.83	101.0	249.9							
				460	3480	81.0	88.5	559.0	75.4	80.1	81.9	0.73	0.80	0.85	123.5	286.0							
6MWCP 600	60	45	26.5	380	3475	98.1	112.8	676.7	75.4	80.1	81.9	0.73	0.80	0.85	123.6	286.3							
				220	3465	169.4	-	1,168.8	74.2	70.1	81.0	0.73	0.80	0.85	123.8	286.9							

P2:	Rated output	P1:
V:	Rated voltage	N:
SF:	Service factor	Cos ϕ :
In:	Rated current	ŋ:
In (SF):	Service factor current	C:
ls/In:	Locked rotor current-Rated current	Ø:
Cs/Cn:	Locked rotor Torque-Rated Torque	LC:

Power consumption

RPM Power factor

Efficiency Capacitor

Cable section

Cable length

6MRCP ELECTRICAL DATA

MODEL	P	'N	axial Load	VOLT.	nΝ	IN	IN (SF)	IA	E	FFICIENC (% load)	Y		Cos (% load)	
	[HP]	[kW]	[kN]	V	rpm	A	Α	А	50	75	100	50	75	100
6MRCP 50	5	3.7	20	230	3350	16.8	19.3	87.8	69	70	70	65	74	85
6MRCP 50	5	3.7	20	460	3350	8.4	9.7	44	69	70	70	65	74	85
6MRCP 75	7.5	5.5	20	230	3360	22.6	26	117	71	72	72	65	74	85
6MRCP 75	7.5	5.5	20	460	3360	11.3	13	59	71	72	72	65	74	85
6MRCP 100	10	7.5	20	230	3380	28.4	32.7	147	77	78	78	65	74	85
6MRCP 100	10	7.5	20	460	3380	14.2	16.3	73	77	78	78	65	74	85
6MRCP 150	15	11	20	230	3400	39.2	45.1	199	80	81	81	67	76	87
6MRCP 150	15	11	20	460	3400	19.6	22.5	101	80	81	81	67	76	87
6MRCP 200	20	15	20	230	3440	54.6	62.8	279	79	82	80	66	75	86
6MRCP 200	20	15	20	460	3440	27.3	31.4	141	79	82	80	66	75	86
6MRCP 250	25	18.5	20	230	3450	69	79.4	346	79	81	80	64	73	85
6MRCP 250	25	18.5	20	460	3450	34.5	39.7	178	79	81	80	64	73	85
6MRCP 300	30	22	20.5	230	3460	80	92	392	80	81	81	65	74	85
6MRCP 300	30	22	20.5	460	3460	40	46	207	80	81	81	65	74	85
6MRCP 400	40	30	26.5	460	3480	53.4	61.4	272	81	82	82	66	75	86
6MRCP 500	50	37	26.5	460	3490	66.6	76.6	341	80	82	81	66	75	86

6MRSP ELECTRICAL DATA

MODEL	Р	'N	axial Load	VOLT.	nΝ	IN	IN (SF)	IA	E	EFFICIENC (% load)	Y		Cos (% load)	
	[HP]	[kW]	[kN]	V	rpm	А	А	А	50	75	100	50	75	100
6MRSP 50	5	3.7	20	230	3350	16.8	19.3	87.8	69	70	70	65	74	85
6MRSP 50	5	3.7	20	460	3350	8.4	9.7	44	69	70	70	65	74	85
6MRSP 75	7.5	5.5	20	230	3360	22.6	26	117	71	72	72	65	74	85
6MRSP 75	7.5	5.5	20	460	3360	11.3	13	59	71	72	72	65	74	85
6MRSP 100	10	7.5	20	230	3380	28.4	32.7	147	77	78	78	65	74	85
6MRSP 100	10	7.5	20	460	3380	14.2	16.3	73	77	78	78	65	74	85
6MRSP 150	15	11	20	230	3400	39.2	45.1	199	80	81	81	67	76	87
6MRSP 150	15	11	20	460	3400	19.6	22.5	101	80	81	81	67	76	87
6MRSP 200	20	15	20	230	3440	54.6	62.8	279	79	82	80	66	75	86
6MRSP 200	20	15	20	460	3440	27.3	31.4	141	79	82	80	66	75	86
6MRSP 250	25	18.5	20	230	3450	69	79.4	346	79	81	80	64	73	85
6MRSP 250	25	18.5	20	460	3450	34.5	39.7	178	79	81	80	64	73	85
6MRSP 300	30	22	20.5	230	3460	80	92	392	80	81	81	65	74	85
6MRSP 300	30	22	20.5	460	3460	40	46	207	80	81	81	65	74	85
6MRSP 400	40	30	26.5	460	3480	53.4	61.4	272	81	82	82	66	75	86
6MRSP 500	50	37	26.5	460	3490	66.6	76.6	341	80	82	81	66	75	86

CAPACITOR [µF]							
POWER	C START	C RUN					
7,5 Hp	145	130					
10 Hp	280	140					
15 Hp	300	200					

- P2: Rated output V: Rated voltage

v. SF: Service Tactor In: Rated current

In (SF): Service factor current Is/In: Locked rotor current-Rated current Cs/Cn: Locked rotor Torque-Rated Torque

	LUCKEU	10101	CULLEUIG	maleu
(Cn·	Lockod	rotor	Torque	Dated '

Loonou		ounone	
I ocked	rotor	Torque-	Rate

LC:

P1:

N:

 $\cos \phi$: Power factor ŋ: C: Efficiency Capacitor Ø: Cable section Cable length

RPM

Power consumption

8MRCP ELECTRICAL DATA

MODEL	P	'N	axial Load	VOLT.	nN	IN	IN (SF)	IA	Efficiency (% load)		y (% load) Cos (% load)			d)
	[HP]	[kW]	[kN]	V	rpm	A	A	А	50	75	100	50	75	100
8MRCP400	40	30	45	460	3450	51.0	58.7	258	83	83	82	82	86	90
8MRCP500	50	37	45	460	3460	61.4	70.6	308	85	85	84	82	86	90
8MRCP600	60	45	45	460	3460	74.8	86	382	85	85	84	82	86	90
8MRCP750	75	55	45	460	3450	90.2	103.7	458	85	85	84	83	87	91
8MRCP1000	100	75	45	460	3450	123.1	141.6	625	85	85	84	82	86	91
8MRCP1250	125	92	55	460	3430	152.8	175.7	770	85	85	84	82	86	90

8MRSP ELECTRICAL DATA

MODEL	P	'N	axial Load	VOLT.	nΝ	IN	IN (SF)	IA	Effic	iency (%	oad)	С	os (% load	d)
	[HP]	[kW]	[kN]	۷	rpm	A	А	А	50	75	100	50	75	100
8MRSP400	40	30	45	460	3450	51.0	58.7	258	83	83	82	82	86	90
8MRSP500	50	37	45	460	3460	61.4	70.6	308	85	85	84	82	86	90
8MRSP600	60	45	45	460	3460	74.8	86	382	85	85	84	82	86	90
8MRSP750	75	55	45	460	3450	90.2	103.7	458	85	85	84	83	87	91
8MRSP1000	100	75	45	460	3450	123.1	141.6	625	85	85	84	82	86	91
8MRSP1250	125	92	55	460	3430	152.8	175.7	770	85	85	84	82	86	90

10MRCP ELECTRICAL DATA

MODEL		N	axial Load	VOLT.	nN	IN	IN (SF)	IA	Efficiency (% load)			Cos (% load)		
	[HP]	[kW]	[kN]	V	rpm	A	А	А	50	75	100	50	75	100
10MRCP 1250	125	92	75	460	3500	149.4	171.8	748	84	84	84	87	90	92
10MRCP 1500	150	110	75	460	3500	180.5	207.6	910	84	85	84	86	89	91
10MRCP 1750	175	129	75	460	3510	207.0	238.1	1050	85	86	85	87	90	92
10MRCP 2000	200	147	75	460	3500	236.0	271.4	1197	85	85	85	87	90	92
10MRCP 2250	225	166	75	460	3490	266.2	306.13	1347	85	85	85	87	90	92
10MRCP 2500	250	185	75	460	3490	297.0	306.13	1502	85	85	85	87	90	92

10MRSP ELECTRICAL DATA

MODEL	Р	'N	axial Load	VOLT.	T. nN IN IN (SF) IA Efficiency (% load) (%			Efficiency (% load)		Cos (% load)				
	[HP]	[kW]	[kN]	V	rpm	A	А	А	50	75	100	50	75	100
10MRSP 1250	125	92	75	460	3500	149.4	171.8	748	84	84	84	87	90	92
10MRSP 1500	150	110	75	460	3500	180.5	207.6	910	84	85	84	86	89	91
10MRSP 1750	175	129	75	460	3510	207.0	238.1	1050	85	86	85	87	90	92
10MRSP 2000	200	147	75	460	3500	236.0	271.4	1197	85	85	85	87	90	92
10MRSP 2250	225	166	75	460	3490	266.2	306.13	1347	85	85	85	87	90	92
10MRSP 2500	250	185	75	460	3490	297.0	306.13	1502	85	85	85	87	90	92

14. DIMENSIONS

6MWCP DIMENSIONS

MODEL	Р	2	l	-	WEIGHT		
WUDEL	[HP]	[kW]	[mm]	[plg]	[Kg]	[lbs]	
6MWCP 50	5	3.7	650	25.6	41	90.6	
6MWCP 75	7.5	5.5	675	26.6	43	95	
6MWCP 100	10	7.5	730	28.7	48	106	
6MWCP 150	15	11	790	31.1	55	121.6	
6MWCP 200	20	15	862	33.9	61	134.8	
6MWCP 250	25	18.5	922	36.3	68	150.3	
6MWCP 300	30	22	962	37.9	74	163.6	
6MWCP 400	40	30	1107	43.6	88	194.5	
6MWCP 500	50	37	1127	44.4	137	302.8	
6MWCP 600	60	45	1157	45.6	150	331.5	

6MRCP DIMENSIONS

MODELO	P	2	l	_	PESO		
WIUDELU	[HP]	[kW]	[mm]	[plg]	[Kg]	[lbs]	
6MRCP 50	5.5	4	649	25.6	40	88.4	
6MRCP 75	7.5	5.5	678	26.7	43.5	96.1	
6MRCP 100	10	7.5	758	29.8	50	110.5	
6MRCP 150	15	11	851	33.5	60	132.6	
6MRCP 200	20	15	973	38.3	72	159.1	
6MRCP 250	25	18.5	1006	39.6	76	168	
6MRCP 300	30	22	1106	43.5	87	192.3	
6MRCP 400	40	30	1247	49.1	103	227.6	
6MRCP 500	50	37	1347	53	110	243.1	

MODELO	Р	2	l	_	PESO		
WIODELU	[HP]	[kW]	[mm]	[plg]	[Kg]	[lbs]	
6MRSP 50	5.5	4	594	23.4	38	83.9	
6MRSP 75	7.5	5.5	623	24.5	42	92.8	
6MRSP 100	10	7.5	703	27.7	48	106.1	
6MRSP 150	15	11	796	31.3	58	128.2	
6MRSP 200	20	15	918	36.14	70	154.7	
6MRSP 250	25	18.5	951	37.4	74	163.5	
6MRSP 300	30	22	1051	41.4	85	187.5	
6MRSP 400	40	30	1196	47	101	223.2	
6MRSP 500	50	37	1296	50.8	108	238.6	

Otras opciones:

Conductores de motor con diferentes longitudes Diferentes voltajes de suministro

14. DIMENSIONS

8MRCP DIMENSIONS

MODEL	Р	2	l	-	WEIGHT		
WUDEL	[HP]	[kW]	[mm]	[plg]	[Kg]	[lbs]	
8MRCP400	40	30	1056	41.6	129	284	
8MRCP500	50	37	1116	43.9	138	304.9	
8MRCP600	60	45	1201	47.3	152	335.9	
8MRCP750	75	55	1286	50.6	170	375.7	
8MRCP1000	100	75	1391	54.7	195	430.9	
8MRCP1250	125	92	1536	60.5	212	468.5	

8MRSP DIMENSIONS

MODEL	Р	2	l	-	WEIGHT		
WIUDEL	[HP]	[kW]	[mm]	[plg]	[Kg]	[lbs]	
8MRSP400	40	30	948	37.3	125	276.3	
8MRSP500	50	37	1008	39.7	134	296.1	
8MRSP600	60	45	1093	43	148	327	
8MRSP750	75	55	1178	46.4	166	366.9	
8MRSP1000	100	75	1283	50.5	191	422.1	
8MRSP1250	125	92	1428	56.2	208	459.6	

Other Options: Motor Leads with different lengths Different supply voltages

10MRCP - 10MRSP DIMENSIONS

	Р	2	l	-	WEIGHT		
MODEL	[HP]	[kW]	[mm]	[plg]	[Kg]	[lbs]	
10MRCP 1250 10MRSP 1250	125	92	1430	56.29	284	626	
10MRCP 1500 10MRSP 1500	150	110	1510	59.44	311	686	
10MRCP 1750 10MRSP 1750	175	129	1610	63.38	338	745	
10MRCP 2000 10MRSP 2000	200	147	1740	68.50	370	816	
10MRCP 2250 10MRSP 2250	225	166	1820	71.65	400	882	
10MRCP 2500 10MRSP 2500	250	185	1820	71.65	405	893	

6" - 8" -10" SUBMERSIBLE MOTORS

No	PARTS	MATERIAL
1	Stator	-
1.1	Winding wire	Copper
1.2	Stator package	M350 M350
1.3	Stator shell	AISI 304
2	Rotor	-
2.1	Shaft sleeve	Coated CrNi
2.2	Balance ring	St 37
2.3	Copper ring	Cu
3	Radial bearing	Carbon
4	Upper bearing body	GG20-22
5	Bushing	Bronze
6	Slinger (sand guard)	NBR_EPDM
7	Hexagon socket cap screws	Stainless Steel
8	Copper ring	Cu
9	Cover seal	AISI 420
10	Mechanical seal	Ceramic Carbon
11	Axial thrust bearing key	AISI 420
12	Axial thrust bearing	Carbon With Antimony
13	Retaining ring	St 37
14	Tie rod	Stainless Steel
15	Lower bearing body	GG20-22
16	Thrust bearing support	GG20-22
17	Ball holder	St 37 (Coated Cr+3)
18	Thrust bearing ball	Stainless Steel
19	Tilting pads	AISI 420
20	0-ring	NBR 70
21	Thrust bearing body	GG20
22	Copper ring	Cu
23	Nut	Stainless Steel
24	Screw (thrust bearing base)	Stainless Steel
25	Membrane	NBR-EPDM
26	Membrane body	GG22
27	Hexagon socket cap screws	Stainless Steel
28	Check-valve	Bronze
29	0-ring	NBR 70
30	Cable seal	NBR
31	Cover seal	AISI 304
32	Nut	Stainless Steel
33	Plush (r 3/8")	Bronze
34	Ball holder pins	Stainless Steel

16. MATERIALS AND COMPONENTS

WATER LUBRICATED RADIAL

Slinger helps to prevent the

sand inside the water of the

well entering in mechanical

seal to inside of the motor.

CHROME-PLATED BEARING

Chrome-plated and precisely

which are located in the radial bearings operating area, have a great importance for bearing

machined bearing collets

COLLET

the rotor.

seal and through mechanical

CARBON BEARINGS

HIGH THRUST CAPACITY

UP-THRUST RING Provides safe operation conditions for motor by absorbing Up-Thrust loads with it's machined surface and water channels on it.

CABLE CONNECTION Preventing the water inside the motor to run through the cable and reach connection parts of power cables by specifically designed cable . seats.

ADJUSTMENT SCREW Standard shaft height can be precisely adjusted by the adjustment screw on the thrust bearing base.

MEMBRANE

Membrane minimizes the expansion pressure that is caused by heating of cooling water's inside the motor.

SLINGER (SAND GUARD) Slinger helps to prevent the sand inside the water of the well entering in mechanical seal and through mechanical seal to inside of the motor.

PT100 OVERHEATING PROTECTION By connecting the PT100 thermal sensors to the slot that is standardly placed on upper bearing body, motor temperature values can be easily measured.

HIGH QUALITY MECHANICAL SEALING SYSTEM High sand resistance and

degree of IP68 protection. Although mechanical seal is optionally used by other companies, it is always used by PEARL as a standard. to prevent sand and other particles to get in motors to provide long bearing life.

PRESSURE BALANCING CHECKVALVE

When pressure increases, it throw water out of the motor. When pressure drops, it filtrates the water inside well and gets it inside the motor by the help of this checkvalve to balance the pressure inside. That's why pressure differences inside motor never causes membrane under motor to blow up.

PRACTICAL CABLE CONNECTION Extremely simple and very practical power cable connection to the motor body. Only for 6" Encapsulated submersible motors

17. MAINTENANCE

Routine maintenance is not required for PEARL Submersible Motors; however, situations may arise when maintenance is necessary. To locate the cause of any problem quickly and to respond correctly, follow the instructions given in point troubleshooting table.

Before starting any maintenance, disconnect the motor from the main power supply or generator if any.

The maintenance should be performed only by qualified personnel.

18. STORAGE

Motors should be stored in areas that do not go below -55 C (-67F).

Even if there are not maximum recommended values for the storage temperature, is not recommended to keep them at temperatures above 45 C (113F) for long period of time.

19. TROUBLESHOOTING

PROBLEM	POSSIBLE CAUSE	REMEDY
	Motor absorbs excessive amount of current	Stop the motor quickly and get in touch with the service
	Pump is jammed	Pull out the pump and send it to the service
Thermal protection system is running	Motor is broken	Pull out the pump and check if motor has any failures and send it to the service
	Setting of thermal relay or selection of relay is wrong	Check the thermal relay and its settings
	Motor runs on two phases	Check power phases, fuses and cable conncetions
Frequent starts and stops	Liquid level electrodes are too close to each other	Distance between two electrodes must be at least 3 meters. Lower electrode should be installe 30 cm up from pump discharge
	Pump equipments are partly/completely blocked	Pull out the pump and have it repaired
	There is excessive amount of air or gas in the water of the well	Fluid must be processed to have air or gas out of it
	Motor's axial thrust bearing is broken	Pull out the pump and replace the axial thrust bearing motor
Pump runs noisy and vibrating	Selected pump is not suitable for this ap- plication	Pull out the pump and install a suitable pump for the application
	Pump's bearing are worn out	Replace the pump's bearings
	Fixing of the installation is weak	Check the installation
	Duty point is out of pump's characteristic curve	Close the valve to decrease the flow rate to make the pump to work at duty point
	No electricity supply	Contact the electricity supply authorities
Dump doop not rup	The fuses are blown	Replace the blown fuses with the new ones
	The dry-running protection has cut off the electricity supply to the pump, due to low water level	Check the water level
Control panel runs noisy	Contactor's circuits are worn out	Check the circuits of the contactor, have them repaired or replaced

PD WATER SYSTEMS - 3000 W. 16 Ave. Miami, FL 33012. TEL: (954) 474 9090 FAX: (954) 889 0413 www.pdwatersystems.com | TO P @ pdwatersystems